Getting here
Location:  Home  >>  Scientists
Details of the Faculty or Staff
Name  
Yang Ziyin
Post  
   Principal Investigator, Plant Metabolomics Group
Highest Education  
   Ph.D.
Office  
   Plant Metabolomics Group, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723,Tianhe District, Guangzhou, China
Phone  
   86-020-38072989
Zip Code  
   510650
Fax  
   N/A
Email  
   zyyang@scbg.ac.cn
Education and Appointments:
 04/2012-present, Principal investigator, South China Botanical Garden, Chinese Academy of Sciences

04/2010-03/2012, JSPS postdoctoral fellow, Shizuoka University, Japan

04/2009-03/2010, JST Research fellow, Shizuoka Organization for Creation of Industries- Shizuoka University, Japan

07/2007-03/2009, Postdoctoral fellow, Shizuoka University, Japan

09/2002-07/2007, Ph.D., Zhejiang University, China

09/1998-07/2002, B.Sc., Jiangxi Agricultural University, China


Research Interest:
   Our research group currently focuses on the formation of specialized metabolites in economic crops in response to biotic and abiotic stresses before/ after harvest, including stress-response mechanisms of the pathways, enzymes, and genes involved in the biosynthesis of these specialized metabolites, as well as the practical applications for the improvement of quality of economic crops during the cultivation and manufacturing processes. 
Public Services:

[1] Editorial member of Scientific Reports.

[2] Guest editor of Frontiers in Plant Science.

[3] Reviewer for 41 international journals


Honors:
Selected Publication:

Journal publications (Corresponding author)

[1] Yu, Z.M., Yang, Z.Y.*. Understanding different regulatory mechanisms of proteinaceous and non- proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2019, doi: 10.1080/10408398.2018.1552245. (* Corresponding author)

[2] Cheng, S.H., Fu, X.M., Liao, Y.Y., Xu, X.L., Zeng, L.T., Tang, J.C., Li, J.L., Lai, J.H., Yang, Z.Y. *. Differential accumulation of specialized metabolite L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry, 2019, 276: 93-100. (* Corresponding author)

[3] Wang, X.Q., Zeng, L.T., Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.*. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 17-24. (* Corresponding author)

[4] Zhou, Y., Peng, Q.Y., Zhang, L., Cheng, S.H., Zeng, L.T., Dong, F., Yang, Z.Y.*. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chemistry, 2019, 280: 27-33. (* Corresponding author)

[5] Fu, X.M., Cheng, S.H., Feng, C., Kang, M., Huang, B.Z., Jiang, Y.M., Duan, X.W., Grierson, D., Yang, Z.Y.*. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures. Food Chemistry, 2019, 283: 131-140. (* Corresponding author)

[6] Zeng, L.T., Wang, X.Q., Dong, F., Watanabe, N., Yang, Z.Y.*. Increasing postharvest high-temperatures lead to increased volatile phenylpropanoids/benzenoids accumulation in cut rose (Rosa hybrida) flowers. Postharvest Biology and Technology, 2019, 148: 68-75. (* Corresponding author)

[7] Zeng, L.T., Watanabe, N., Yang, Z.Y.*. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2018, doi: 10.1080/10408398.2018.1506907. (* Corresponding author)

[8] Zhou, Y., Peng, Q.Y., Zeng, L.T., Tang, J.C., Li, J.L., Dong, F., Yang, Z.Y.*. Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants. Food Chemistry, 2018, 258: 352-358. (* Corresponding author)

[9] Fu, X.M., Cheng, S.H., Liao, Y.Y., Huang, B.Z., Du, B., Zeng, W., Jiang, Y.M., Duan, X.W., Yang, Z.Y.*. Comparative analysis of pigments in red and yellow banana fruit. Food Chemistry, 2018, 239: 1009-1018. (* Corresponding author)

[10] Zeng, L.T., Zhou, Y., Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.*. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 3899-3909. (* Corresponding author)

[11] Peng, Q.Y., Zhou, Y., Liao, Y.Y., Zeng, L.T., Xu, X.L., Jia, Y.X., Dong, F., Li, J.L., Tang, J.C., Yang, Z.Y.*. Functional characterization of an allene oxide synthase involved in biosynthesis of jasmonic acid and its influence on metabolite profiles and ethylene formation in tea (Camellia sinensis) flowers. International Journal of Molecular Sciences, 2018, 19: 2440. (* Corresponding author)

[12] Chen, Y.Y., Zhou, B., Li, J.L., Tang, H., Tang, J.C.*, Yang, Z.Y.*. Formation and change of chloroplast-located plant metabolites in response to light conditions. International Journal of Molecular Sciences, 2018, 19: 654. (* Corresponding author)

[13] Chen, Y.Y., Zhou, Y., Zeng, L.T., Dong, F., Tu, Y.Y., Yang, Z.Y.*. Occurrence of functional molecules in the flowers of tea (Camellia sinensis) plants: evidence for a second resource. Molecules, 2018, 23: 790. (* Corresponding author)

[14] Dong, F., Zeng, L.T., Yu, Z.M., Li, J.L., Tang, J.C., Su, X.G.*, Yang, Z.Y.*. Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis) leaves. Molecules, 2018, 23: 2677. (* Corresponding author)

[15] Zeng, L.T., Zhou, Y., Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.*. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488-498. (* Corresponding author)

[16] Zhou, Y., Zeng, L.T., Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.*. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry, 2017, 231: 78-86. (* Corresponding author)

[17] Mei, X., Liu, X.Y., Zhou, Y., Wang, X.Q., Zeng, L.T., Fu, X.M., Li, J.L., Tang, J.C., Dong, F., Yang, Z.Y.*. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda. Food Chemistry, 2017, 237: 356-363. (* Corresponding author)

[18] Fu, X.M. , Cheng, S.H , Zhang, Y.Q., Du, B., Feng, C., Zhou, Y., Mei, X., Jiang, Y.M., Duan, X.W., Yang, Z.Y.*. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragaria×ananassa Duch) under interaction of light and temperature. Food Chemistry, 2017, 221: 356-364. (* Corresponding author)

[19] Cheng, S.H., Fu, X.M., Wang, X.Q., Liao, Y.Y., Zeng, L.T., Dong, F., Yang, Z.Y.*. Studies on the biochemical formation pathway of the amino acid Ltheanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2017, 65: 7210-7216. (* Corresponding author)

[20] Zhou, Y., Zeng, L.T., Gui, J.D., Liao, Y.Y., Li, J.L., Tang, J.C., Meng, Q., Dong, F., Yang, Z.Y.*. Functional characterizations of beta-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International, 2017, 96: 206-214. (* Corresponding author)

[21] Chen, Y.Y., Fu, X.M., Mei, X., Zhou, Y., Cheng, S. H., Zeng, L.T., Dong, F., Yang, Z.Y.*. Proteolysis of chloroplast proteins is responsible for accumulation of amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157: 10-17. (* Corresponding author)

[22] Zeng, L.T., Liao, Y.Y., Li, J.L., Zhou, Y., Tang, J.C., Dong, F., Yang, Z.Y.*. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Science, 2017, 264: 29-36. (* Corresponding author)

[23] Zeng, L.T., Wang, X.Q., Kang, M., Dong, F., Yang, Z.Y.*. Regulation of the rhythmic emission of plant volatiles by the circadian clock. International Journal of Molecular Sciences, 2017, 18: 2408. (* Corresponding author)

[24] Zhou, Y., Zeng, L.T., Liao, Y.Y., Dong, F., Peng, Q.Y., Li, J.L., Tang, J.C., Watanabe, N., Yang, Z.Y.*. Insect (Thrips hawaiiensis (Morgan)) change the stereochemical configuration of 1-phenylethanol emitted from tea (Camellia sinensis) flowers. RSC Advances, 2017, 7: 32336-32343. (* Corresponding author)

[25] Fu, X.M., Zhou, Y., Zeng, L.T., Dong, F., Mei, X., Liao, Y.Y., Watanabe, N., Yang, Z.Y.*. Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Advances, 2017, 7: 19363-19372. (* Corresponding author)

[26] Liao, Y.Y., Zeng, L.T., Li, P., Sun, T., Wang, C., Li, F.W., Chen, Y.Y., Du, B.*, Yang, Z.Y.*. Influence of plant growth retardants on quality of Codonopsis Radix. Molecules, 2017, 22: 1655. (* Corresponding author)

[27] Dong, F., Zhou, Y., Zeng, L.T., Watanabe, N., Su, X.G.*, Yang, Z.Y.*. Optimization of production of 1-phenylethanol using enzymes from flowers of tea (Camellia sinensis) plants. Molecules, 2017, 22: 131. (* Corresponding author)

[28] Zeng, L.T., Zhou, Y., Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.*. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011-5019. (* Corresponding author)

[29] Chen, Y.Y., Fu, X.M., Mei, X., Zhou, Y., Du, B., Tu, Y.Y., Yang, Z.Y.*. Characterization of functional proteases from flowers of tea (Camellia sinensis) plants. Journal of Functional Foods, 2016, 25: 149-159. (* Corresponding author)

[30] Zhang, Y., Fu, X.M., Wang, F.Y., Yang, Z.Y.*. Spatial differences in (Z)-3-hexen-1-ol production preferentially reduces Spodoptera litura larva attack on the young leaves of Nicotiana benthamiana. Plant Science, 2016, 252: 367-373. (* Corresponding author)

[31] Cheng, S.H., Fu, X.M., Mei, X., Zhou, Y., Du, B., Watanabe, N., Yang, Z.Y.*. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiology and Biochemistry, 2016, 107: 1-8. (* Corresponding author)

[32] Zhou, Y., Zeng, L.T., Fu, X.M., Mei, X., Cheng, S.H., Liao, Y.Y., Deng, R.F., Xu, X.L., Jiang, Y.M., Duan, X.W., Baldermann, S., Yang, Z.Y.*. The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Scientific Reports, 2016, 6: 38742. (* Corresponding author)

[33] Mei, X., Chen, Y.Y., Zhang, L.Y., Fu, X.M., Wei, Q., Grierson, D., Zhou, Y., Hang, Y.H., Dong, F., Yang, Z.Y.*. Dual mechanisms regulating glutamate decarboxylases and accumulation of gammaaminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses. Scientific Reports, 2016, 6: 23685. (* Corresponding author)

[34] Dong, F., Fu, X.M., Watanabe, N., Su, X.G.*, Yang, Z.Y.*. Recent advances in the emission and functions of plant vegetative volatiles. Molecules, 2016, 21: 124. (* Corresponding author)

[35] Dong, F., Zhou, Y., Zeng, L.T., Peng, Q.Y., Zhang, L., Su, X.G.*, Watanabe, N., Yang, Z.Y.*. Elucidation of differential accumulation of 1-phenylethanol in flowers and leaves of tea (Camellia sinensis) plants. Molecules, 2016, 21: 1106. (* Corresponding author)

[36] Gui, J.D., Fu, X.M. , Zhou, Y., Katsuno, T., Mei, X., Deng, R.F., Xu, X.L., Zhang, L.Y., Dong, F., Watanabe, N., Yang, Z.Y.*. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry, 2015, 63: 6905-6914. (* Corresponding author)

[37] Fu, X.M. , Chen, Y.Y. , Mei, X., Katsuno, T., Kobayashi, E., Dong, F., Watanabe, N., Yang, Z.Y.*. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports, 2015, 5: 16858. (* Corresponding author)

[38] Zhou, Y., Zhang, L., Gui, J.D., Dong, F., Cheng, S., Mei, X., Zhang, L.Y., Li, Y.Q., Su, X.G., Baldermann, S., Watanabe, N., Yang, Z.Y.*. Molecular cloning and characterization of a short chain dehydrogenase showing activity with volatile compounds isolated from Camellia sinensis. Plant Molecular Biology Reporter, 2015, 33: 253-263. (* Corresponding author)

[39] Zhou, Y., Dong, F., Kunimasa, A., Zhang, Y., Cheng, S., Lu, J., Zhang, L., Murata, A., Mayer, F., Fleischmann, P., Watanabe, N., Yang, Z.Y.*. Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase -primeverosidase in tea (Camellia sinensis) flowers. Journal of Agricultural and Food Chemistry, 2014, 62: 8042-8050. (* Corresponding author)

[40] Chen, Z.C., Mei, X., Jin Y., Kim, E., Yang, Z.Y.*, Tu, Y.Y.*.. Optimization of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. Journal of the Science of Food and Agriculture, 2014, 94: 316-321. (* Corresponding author)

Journal publications (First author)

[1] Yang, Z.Y., Baldermann, S. , Watanabe, N.*. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53: 585-599.

[2] Yang, Z.Y., Kobayashi, E., Katsuno, T., Asanuma, T., Fujimori, T., Ishikawa, T., Tomomura, M., Mochizuki, K., Watase, T., Nakamura, Y., Watanabe, N.*. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry, 2012, 135: 2268-2276.

[3] Yang, Z.Y., Dong, F., Baldermann, S., Murata, A., Tu, Y.Y., Asai, T., Watanabe, N.*. Isolation and identification of spermidine derivatives in flowers of tea (Camellia sinensis) plants and their distributions in floral organs. Journal of the Science of Food and Agriculture, 2012, 92: 2128-2132.

[4] Dong, F. #, Yang, Z.Y. #, Baldermann, S., Kajitani,Y., Ota, S., Kasuga, H., Imazeki, Y., Ohnishi, T., Watanabe, N.*. Characterization of L-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. Journal of Plant Physiology, 2012, 169: 217-225. (#Co-first authors).

[5] Yang, Z.Y., Endo, S., Tanida, A., Kai, K., Watanabe, N.*. Synergy effect of sodium acetate and glycosidically bound volatiles on the release of volatile compounds from the unscented cut flower (Delphinium elatum L. “Blue Bird”). Journal of Agricultural and Food Chemistry, 2009, 57: 6396-6401.

[6] Yang, Z.Y., Sakai, M., Sayama, H., Shimeno, T., Yamaguchi, K., Watanabe, N.*. Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. Journal of Plant Physiology, 2009, 166: 887-891.

[7] Yang, Z.Y., Tu, Y.Y., Baldermann, S., Dong, F., Xu, Y., Watanabe, N.*. Isolation and identification of compounds from the ethanolic extract of flowers of the tea plant (Camellia sinensis) and their contribution to the antioxidant capacity. LWT-Food Science and Technology, 2009, 42: 1439-1443.

[8] Yang, Z.Y., Dong, F., Shimizu, K., Kinoshita, T., Kanamori, M., Morita, A., Watanabe, N.*. Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose. Journal of Food Engineering, 2009, 92: 312-316.

[9] Yang, Z.Y., Kinoshita, T., Tanida, A., Sayama, H., Morita, A., Watanabe, N.*. Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chemistry, 2009, 114: 289-294.

[10] Yang, Z.Y., Jie, G.L., Dong, F., Xu, Y., Watanabe, N., Tu, Y.Y.*. Radical-scavenging abilities and antioxidant properties of theaflavins and their gallate esters in H2O2-mediated oxidative damage system in the HPF-1 cells. Toxicology in Vitro, 2008, 22: 1250-1256.

[11] Yang, Z.Y., Tu, Y.Y.*, Xia, H.L., Jie, G.L., Chen, X.M., He, P.M. Suppression of free-radicals and protection against H2O2-induced oxidative damage in HPF-1 cell by oxidized phenolic compounds present in black tea. Food Chemistry, 2007, 105: 1349-1356.

[12] Yang, Z.Y., Xu, Y., Jie, G.L., He, P.M., Tu, Y.Y.*. Study on the antioxidant activity of tea flowers (Camellia sinensis). Asia Pacific Journal of Clinical Nutrition, 2007, 16 (Suppl. 1): 148-152.

Journal publications (Co-author)

[1] Yu, Z.M., Yang, Z.Y., da Silva, J.A.T., Luo, J.P., Duan, J.*. Influence of low temperature on physiology and bioactivity of postharvest Dendrobium officinale stems. Postharvest Biology and Technology, 2019, 148: 97-106.

[2] Yu, Z.M., He, C.M., da Silva, J.A.T., Luo, J.P., Yang, Z.Y., Duan, J.*. The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. Plant Science, 2018, 277: 43-54.

[3] Yu, Z.M., Liao, Y.Y., da Silva, J.A.T., Yang, Z.Y., Duan, J.*. Differential accumulation of anthocyanins in Dendrobium officinale stems with red and green peels. International Journal of Molecular Sciences, 2018, 19: 2857.

[4] Chahel, A.A., Zeng, S.H.*, Yousaf, Z.*, Liao, Y.Y., Yang, Z.Y., Wei, X.Y., Wang, Y.*. Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell, Tissue and Organ Culture, 2018, doi.org/10.1007/s11240-018-1518-2.

[5] Li, P., Jiang, Z., Sun, T., Wang, C., Chen, Y.Y., Yang, Z.Y., Du, B.*, Liu, C.Y. Comparison of structural, antioxidant and immuno-stimulating activities of polysaccharides from Tremella fuciformis in two different regions of China. International Journal of Food Science and Technology, 2018, 53: 1942-1953.

[6] Luo, S.X.*, Liu, T.T., Cui, F., Yang, Z.Y., Hu, X.Y., Renner, S.S.*. Coevolution with pollinating resin midges led to resin-filled nurseries in the androecia, gynoecia and tepals of Kadsura (Schisandraceae). Annals of Botany, 2017, 120: 653-664.

[7] Cui, J., Katsuno, T., Totsuka, K., Ohnishi, T., Takemoto, H., Mase, N., Toda, M., Narumi, T., Sato, K., Matsuo, T., Mizutani, K., Yang, Z.Y., Watanabe, N.*, Tong, H.*. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. Journal of Agricultural and Food Chemistry, 2016, 64: 1151-1157.

[8] Katsuno, T., Kasuga, H., Kusano, Y., Yaguchi, Y., Tomomura, M., Cui, J.L., Yang, Z.Y., Baldermann, S., Nakamura, Y., Ohnishi, T., Mase, N., Watanabe, N.*. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry, 2014, 148: 388-395.

[9] Meng, Q., Yang, Z.Y., Jie, G., Gao, Y., Zhang, X., Li, W., Li, B., Tu, Y.Y.*. Evaluation of antioxidant activity of tea polyphenols by a quantum chemistry calculation method- PM6. Journal of Food and Nutrition Research, 2014, 2: 965-972.

[10] Baldermann, S., Yang, Z.Y., Katsuno, T., Tu, V.A., Mase, N., Nakamura, Y., Watanabe, N.*. Discrimiantion of green, oolong, and black teas by GC-MS analysis of characeristic volatile flavor compounds. American Journal of Analytical Chemistry, 2014, 5: 620-632.

[11] Baldermann, S., Yang, Z.Y., Sakai, M., Fleischmann, P., Morita, A., Todoroki, Y., Watanabe, N.*. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis). Journal of the Science of Food and Agriculture, 2013, 93: 1660-1664.

[12] Dong, F., Yang, Z.Y., Baldermann, S., Sato, Y., Asai, T., Watanabe, N.*. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. Journal of Agricultural and Food Chemistry, 2011, 59: 13131-13135.

[13]Baldermann, S., Mulyadi, A.N., Yang, Z.Y., Murata, A., Fleischmann, P., Winterhalter, P., Knight, M., Finn, T.M., Watanabe, N.*. Application of centrifugal precipitation chromatography and high speed counter-current chromatography equipped with a spiral tubing support rotor for the isolation and partial characterization of carotenoid cleavage-like enzymes in Enteromorpha compressa Nees. Journal of Separation Science, 2011, 34: 2759-2764.

[14] Kinoshita, T., Hirata, S., Yang, Z.Y., Baldermann, S., Kitayama, E., Matsumoto, S., Suzuki, M., Fleischmann, P., Winterhalter, P., Watanabe, N.*. Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chemistry, 2010, 123: 601-606.


Supported Projects:
Tel:0086-20-38314070   Fax:0086-20-83986637   Email:yuyan@scbg.ac.cn
Address:No.723,Xingke Road,Tianhe District,Guangzhou,China    Postcode:510650
Copyright©South China Botanical Garden  All Right Reserved, Powered by scbg.ac.cn